If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50=0.81t^2
We move all terms to the left:
50-(0.81t^2)=0
We get rid of parentheses
-0.81t^2+50=0
a = -0.81; b = 0; c = +50;
Δ = b2-4ac
Δ = 02-4·(-0.81)·50
Δ = 162
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{162}=\sqrt{81*2}=\sqrt{81}*\sqrt{2}=9\sqrt{2}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-9\sqrt{2}}{2*-0.81}=\frac{0-9\sqrt{2}}{-1.62} =-\frac{9\sqrt{2}}{-1.62} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+9\sqrt{2}}{2*-0.81}=\frac{0+9\sqrt{2}}{-1.62} =\frac{9\sqrt{2}}{-1.62} $
| 3(x+2)/5=3 | | 2(x-3)+3=6x+5 | | 4(s-85)=24 | | -(d–94)=22 | | 0=(2/3)^x-4 | | -58.8=-4.9x^2+19.6x | | Z+4(6+z)=21 | | 2(2x+5)+65=8x+5-4x+70 | | 65=29+2g | | 96x-12=12(8x-1) | | 2x^2-100=-20 | | 6(u+7)=84 | | 171=1/2(x)(1) | | 7x+17=82.1 | | (x-6)^2=13 | | (2x)^2-100=0 | | j-63/8=4 | | 5z+5/4=6z+7/4 | | 4(k+3)-2(k-3)=38 | | 2/3(6x+1)=6+1/3(12x+8) | | 6-x÷5=8 | | f/0.2.5=16 | | 2/3x-11=-9 | | 0.5n+7+n=20 | | 2(0.5x+1)=-3(2x-1)+4(2x+1) | | 30x+78=30x+37 | | s/7+19=24 | | 7x+23x-6=6(5x+5) | | -6=0+b | | 4/x+1=5/3x+1 | | x=0.5(x-4+2x-3) | | 8x-128/5=-24x+4+3/5 |